您选择的条件: Luqi Yuan
  • Simulating graphene dynamics in one-dimensional modulated ring array with synthetic dimension

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A dynamically-modulated ring system with frequency as a synthetic dimension has been shown to be a powerful platform to do quantum simulation and explore novel optical phenomena. Here we propose synthetic honeycomb lattice in a one-dimensional ring array under dynamic modulations, with the extra dimension being the frequency of light. Such system is highly re-configurable with modulation. Various physical phenomena associated with graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits important potentials for manipulating photons in different ways. Our work unveils a new platform for constructing the honeycomb lattice in a synthetic space, which holds complex functionalities and could be important for optical signal processing as well as quantum computing.

  • Observation of flat-band and band transition in the synthetic space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Constructions of synthetic lattices in photonics attract growingly attentions for exploring interesting physics beyond the geometric dimensionality, among which modulated ring resonator system has been proved as a powerful platform to create different kinds of connectivities between resonant modes along the synthetic frequency dimension with many theoretical proposals. Various experimental realizations are investigated in a single ring resonator, while building beyond simple synthetic lattices in multiple rings with different types remains lacking, which desires to be accomplished as an important step further. Here, we implement the experimental demonstration of generating the one-dimensional Lieb lattice along the frequency axis of light, realized in two coupled ring resonators while the larger ring undergoing dynamic modulation. Such synthetic photonic structure naturally exhibits the physics of flat band. We show that the time-resolved band structure read out from the drop-port output of the excited ring is the intensity projection of the band structure onto specific resonant mode in the synthetic momentum space, where gapless flat band, mode localization effect, and flat to non-flat band transition are observed in experiments and verified by simulations. Our work gives a direct evidence for the constructing synthetic Lieb lattice with two rings, which hence makes a solid step towards experimentally constructing more complicated lattices in multiple rings associated with synthetic frequency dimension.

  • Arbitrary synthetic dimensions via multi-boson dynamics on a one-dimensional lattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The synthetic dimension, a research topic of both fundamental significance and practical applications, is attracting increasing attention in recent years. In this paper, we propose a theoretical framework to construct arbitrary synthetic dimensions, or N-boson synthetic lattices, using multiple bosons on one-dimensional lattices. We show that a one-dimensional lattice hosting N indistinguishable bosons can be mapped to a single boson on a N-dimensional lattice with high symmetry. Band structure analyses on this N-dimensional lattice can then be mathematically performed to predict the existence of exotic eigenstates and the motion of N-boson wavepackets. As illustrative examples, we demonstrate the edge states in two-boson Su-Schrieffer-Heeger synthetic lattices without interactions, interface states in two-boson Su-Schrieffer-Heeger synthetic lattices with interactions, and weakly-bound triplon states in three-boson tight-binding synthetic lattices with interactions. The interface states and weakly-bound triplon states have not been thoroughly understood in previous literatures. Our proposed theoretical framework hence provides a novel perspective to explore the multi-boson dynamics on lattices with boson-boson interactions, and opens up a future avenue in the fields of multi-boson manipulation in quantum engineering.

  • Single Pulse Manipulations in Synthetic Time-frequency Space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, we theoretically explore a dispersive waveguide under the dynamic phase modulation that supports single pulse manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, we explore temporal diffraction and frequency conversion in a synthetic time-frequency space while the pulse evolves along the spatial dimension. By introducing the effective gauge potential well for photons in the synthetic time-frequency space with the control of the modulation phase, we show that a rich set of pulse propagation behaviors can be achieved, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonlinear oscillation subject to the effective force along the frequency axis of light, we provide an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.

  • Photon retention in coherently excited nitrogen ions

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation, strong dipole transitions and long-lived coherence. Here, we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions (N2+) which are produced using a strong 800 nm femtosecond laser pulse. Such photon retention, facilitated by quantum coherence, keeps releasing directly-unmeasurable coherent photons for tens of picoseconds, but is able to be read-out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption, resulting in a strong radiation at 329.3 nm. We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system. This new finding unveils the nature of the coherent quantum control in N2+ for the potential platform for optical information storage in the remote atmosphere, and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心